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Abstract

In order to better understand certain geometric spaces, one might be

inclined to study maps between them. Maps from compact Riemann sur-

faces to the sphere are ramified covers. The (automorphism weighted)

number of such maps from a given surface with certain fixed properties

is the Hurwitz number. We introduce Hurwitz numbers and then a fam-

ily thereof, double Hurwitz numbers. We then define the various moduli

spaces, and objects therein, which will allow us to compute the 2,3, genus

zero case of the double Hurwitz (piecewise) polynomial by using a nifty

wall-crossing formula.
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1 Introduction

Were I to speak of my new compact Riemann surface about which you knew
almost nothing, you might be inclined to request that I compare it to an object
you know well, say for instance, the sphere. Acquiescing to this request, I might
in turn produce for you some maps from my nice new surface to your beloved
sphere. A good question at this point would perhaps be,

“What do maps from your surface to the sphere tell me

about its properties?”

Maps from a compact Riemann surface onto the Riemann sphere are rami-
fied covers. That is, there are a finite number of branch points on the sphere (the
collection of which is called the branch locus), such that the number of points
in the preimage of a branch point is less than the degree of the map. Take, for
instance, figure 1. It depicts a degree 5 ramified cover of the Riemann sphere.
The red “x” represents a point on the sphere not in the branch locus, and the
five “x”s above it represent its preimage. The blue points on the sphere are the
map’s branch points, each having less than five points in its preimage. Because

Figure 1: Ramified cover of P1

the number of points in the preimage of a branch point is less than the degree of
our map, we count the points in the preimage with multiplicities, such that the
sum of these multiplicities equals our degree. For instance, the leftmost branch
point in figure 1 has only one preimage, which necessarily has a multiplicity of
5. In fact, if we gave reasonable local coordinates to neighborhoods of these
two points, we would get the map z 7→ z5 as is shown in figure 2. In general,
we say that the ramification of a point is its multiplicity minus 1. Thanks to
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Figure 2: Ramification of a point

the Riemann-Hurwitz equation, we have a way to relate the genus of our source
curve to the degree of our map and its total ramification.

Now, a reasonable question might be,

“How many such covers are there for a given genus, de-

gree, and fixed branch locus with prescribed ramification

profiles?”

Hurwitz numbers answer just this. Geometrically, they count genus g, degree d
covers of P1 with prescribed ramification over a fixed branch locus.

Hurwitz numbers have played a role in a somewhat diverse collection of
areas within mathematics. Stemming from the work of Hurwitz himself, they are
useful for relating combinatorial objects to the geometry of elliptic curves (as in
[GGN12] and [BCF+12]). They have also been important objects of study in the
area of Gromov-Witten theory and in the study of the moduli space of curves.
The main result connecting Hurwitz numbers to the moduli space of curves was
given by Ekedahl, Lando, Shapiro, and Vainshtein (as the now dubbed “ELSV
formula”) in [ELSV01], which gives Hurwitz numbers as an integral over the
moduli space of curves. This formula has led to many strong geometric results
such as Okounkov and Pandharipande’s proof of Witten’s conjecture, relating
tautological intersection theory on the moduli space of curves and integrable
systems.

For our purposes, we concern ourselves with a specific case of Hurwitz num-
bers denoted double Hurwitz numbers (which are defined precisely in the follow-
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ing section, 2.1.) This family of Hurwitz numbers has generated an interest as
to their geometric properties. In [GJV03], Goulden, Jackson, and Vakil prove
a piecewise polynomiality result for double Hurwitz numbers. This piecewise
polynomiality corresponds to a chamber structure in the domain of ramification
profiles which has, in turn, been explored in genus 0 in [SSV08], and then in
greater generality in [CJM10].

Cavalieri and Marcus express the double Hurwitz number as an intersec-
tion of tautological classes on Mg,n in [CM13]. They view the double Hurwitz
number as effectively being top intersections of a psi class in the moduli space
of relative stable maps to an unparametrized P1. Psi classes on the space of
relative stable maps are equal to the pullback via the stabilization morphism of
psi classes inMg,n plus chamber dependent boundary corrections. Pushing for-
ward via the stabilization morphism and applying projection formula, Cavalieri
and Marcus express the Hurwitz number in terms of tautological intersections
on Mg,n. In genus 0, however, they reach a curiosity (§5.1, [CM13]). At cer-
tain wall-crossings, divisors appear in the correction which push forward, via
the stabilization morphism, to 0 in M0,n. However, these divisors have non-
trivial intersections in the space of relative stable maps. Furthermore, these
intersections push forward to strata with nontrivial multiplicities in Mg,n and,
therefore, contribute to the Hurwitz polynomial. They find that ignoring such
divisors produces a result that is correct only up to a sign. They take this to
mean “that there are interesting and potentially useful vanishing statements
hidden in the intersections that constitute the geometric wall crossing formula.”

In this paper, we compute a specific case of the genus 0 Hurwitz polynomial
using the methods of Cavalieri and Marcus, while also including intersections
from the types of divisors which have led to their “genus 0 curiosity.” In the
dearth of an explanation for this curiosity, the hope is that such explicit com-
putations might help lead to a conjecture of the cause of Cavalieri and Marcus’
erroneous sign. This thesis is organized as follows:

First, in section 2.1, we introduce double Hurwitz numbers more precisely.
We explain the chamber structure which corresponds to their piece-wise poly-
nomiality. This chamber structure introduces a wall-crossing formula which will
be used in computing the double Hurwitz number in each chamber. Then, we
introduce the spaces and maps appearing in the central diagram, which we use
to compute our piece-wise polynomial geometrically. Additionally, in section
3.6, we define the psi classes necessary for intersection theory on each of these
spaces.

In section 4 we use the fact that the degree of the branch map, from the
space of relative stable maps to the Losev-Manin space, is our double Hurwitz
number. This allows us, in our final section (§5), to compute the double Hurwitz
number by the pull back of a point (in terms of a psi class) in the Losev-Manin

space. This gives us a formula in terms of x1ψ̃1, a psi class on the space of
relative stable maps. We can then compute the Hurwitz polynomial in terms
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of intersections of boundary divisors which appear as corrections at each wall
crossing. As previously stated, we include in these calculations those divisors
which caused the genus zero curiosity in [CM13] (which is simpler to do in our
specific case than in the general one).

With these intersections we get an expression in each chamber which we
push forward via our stabilization morphism to obtain a formula in terms of
intersections on M0,5.

Acknowledgments

The author wishes to thank his advisor, Renzo Cavalieri, for putting up with
(and advising) him through this process, as well his wife for tirelessly brewing
the coffee required to see this through.

2 Double Hurwitz Numbers

Fix d, g ∈ N and partitions x0, x∞ of d. Double Hurwitz numbers Hg(x0,x∞)
count the number of (automorphism-weighted) genus g, degree d ramified covers
of P1 with fixed branch points, where the ramification profile over 0 and ∞ are
given by x0 and x∞, respectively. We require that all other branch points have
simple ramification profiles.

We consider the parts of x∞ to be negative (note: this does not affect the
ramification profile over ∞). Let x be the n-tuple of integers whose positive
and negative components are given by x0 and x∞, respectively. Then x =
(x1, x2, . . . , xn) and we get the relation

n∑
i=1

xi = 0 (1)

For our purposes, we will proceed to only consider genus 0 covers and will use
the notation H(x ) to mean H0(x 0,x∞), where x is defined as above.

If we consider all x = (x1, x2, . . . , xn) in (Z \ {0})n such that
∑
xi = 0,

then double Hurwitz numbers determine a function

H : (Z \ {0})n → Q (2)

which Goulden, Jackson, and Vakil showed to be a piecewise polynomial of
degree n− 3 (4g − 3 + n for any given genus) in [GJV03].

Example 2.1. Consider H(x), where x ∈ (Z \ {0})5. Fix x with the following

properties:
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(a) x1, x2 > 0

(b) x3, x4, x5 < 0

(c) x1 > |xi|+ |xj | for every i, j ∈ {2, 3, 4, 5}

Then, for such an x, we have that H(x) = 6x21, which is degree 2 as expected

(for the computation rendering this result, see section 5.1). Figure 3 shows

the case where x = (10, 2,−3,−4,−5). The degree of such a map is 12, and

the Riemann-Hurwitz formula gives that there must be three branch points

with simple ramification profiles. There are 600 such (automorphism-weighted)

ramified covers.

10

2

0 

3

4

5

Figure 3: Ramified covers given by x0 = (10, 1) and x∞ = (−3,−4,−5)

In our calculations, we will look only at Hurwitz numbers where the lengths
of x0 and x∞ are 2 and 3, respectively. We refer to these as 2,3 Hurwitz numbers.

2.1 Chamber structure of Hurwitz polynomials

Shadrin, Shapiro, and Vainshtein, in [SSV08] showed that the piecewise nature
of Hurwitz polynomials (in genus 0) corresponds to a partitioning of the domain
(Z \ {0})n into chambers. (A description of this chamber structure for arbitrary
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genus is given in [CJM10].) Let I ( {1, . . . , n}. The walls which define the
chambers in (Z \ {0})n are defined by the hyperplanes

WI =

{∑
i∈I

xi = 0

}
(3)

in Rn. Additionally, two adjacent chambers come with a corresponding wall-
crossing polynomial. Fix I ⊂ {1, . . . , n}. Let c1 be a chamber along WI

such that
∑
i∈I xi < 0 and c2 a chamber along WI (adjacent to c1) such that∑

i∈I xi > 0. Let P1(x) be the the Hurwitz polynomial in c1 (respectively P2(x)
and c2) The wall crossing is given by the polynomial

WCI(x) = P2(x)− P1(x) (4)

an explicit formula for which is given in [CJM10], Theorem 1.5.

3 Setup

We now recall the definitions and background required to establish the central
diagram, appearing in [CM13], which we use to calculate the 2, 3 double Hurwitz
polynomial (geometrically) in each chamber.

3.1 Moduli of n marked points on P1

A moduli space is a space which parametrizes geometric objects up to an equiv-
alence. In turn, the moduli space is, itself, a geometric object whose points
correspond to the objects which it is parameterizing. We consider the following
moduli space

M0,n =
{(

P1, (p1, p2, . . . , pn)
)∣∣p1, p2, . . . , pn ∈ P1, pi 6= pj

}
/ ∼ (5)

where
(
P1, (p1, p2, . . . , pn)

)
∼
(
P1, (p′1, p

′
2, . . . , p

′
n)
)

if there exists an automor-
phism φ in Aut(P1) such that φ(pi) = p′i for all i ∈ {1, . . . , n}. (Where there is
no confusion, simply refer to the n marked points as 1, 2, . . . , n.)

Remark 3.1. Given any three points on P1, there exists an automorphism

mapping any three points to 0, 1, and ∞.

Consider
(
P1 \ {0, 1,∞}

)n−3
and define coordinates x1, . . . , xn−3 on each

of the n− 3 factors of P1 \ {0, 1,∞}. Define ∆ to be the set of diagonals where
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xi = xj for some i, j ∈ {1, . . . , n− 3}. As a result of remark of 3.1 and the
stipulation that pi 6= pj in the definition of M0,n, it is easy to show that

M0,n
∼=
(
P1 \ {0, 1,∞}

)n−3 \∆ (6)

As a consequence, M0,n is an affine, smooth space of dimension n− 3.

M0,n is not compact (consider points in ∆ from equation 6). The Deligne-
Mumford compactification of M0,n is denoted

M0,n =
{(
C,P1, (p1, p2, . . . , pn)

)
| p1, p2, . . . , pn ∈ C, pi 6= pj

}
/ ∼ (7)

where C is a nodal curve whose irreducible components are isomorphic to P1.
The points p1, p2, . . . , pn lie on the smooth locus of C. Additionally, C must be
stable, where stability is defined by the ampleness of the log canonical divisor
KC +

∑n
i=1 pi.

Since stability is defined by the ampleness of the log canonical divisor we
have that the nodal points of C are considered special points even though they
do not correspond to any of the pi’s; and, therefore, contribute to stability.
Furthermore,

(
C,P1, (p1, p2, . . . , pn)

)
∼
(
C′,P1, (p′1, p

′
2, . . . , p

′
n)
)

if there exists
an automorphism φ : C → C′ such that φ(pi) = p′i. ([DM69])

We will be working with M0,5, which we construct in 3.1.1.

3.1.1 A geometric construction of M0,5

3.2 Losev-Manin Spaces

We introduce a family of compactifications ofM0,n studied by Hassett ([Has02]).
Assigning weights {ai}ni=1 to p1, . . . , pn, such that

∑n
i=1 ai > 2, and requiring

the divisor KC +
∑n
i=1 aipi to be ample, we get a new compact moduli space

M0,n(a1, a2, . . . , an) which parametrizes weighted, nodal, stable curves of genus
0 .

Alternatively, one can give a more combinatorial description of this stability
condition. Let C be a nodal curve with marked points p1, . . . , pn with respective
weights a1, . . . , an. Then C =

⋃
Cj , where the Cjs are the irreducible compo-

nents of C. Let Ij ⊆ {1, . . . , n} be the set of indices of the marked points on the
irreducible component Cj . Then we have that the curve C is stable if and only
if for every irreducible component Cj of C,∑

i∈Ij

ai + nCj > 2 (8)

where nCj is the number of nodes of Cj .
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There is a natural contraction morphism

c :M0,n →M0,n(a1, a2, . . . , an) (9)

which takes a point in M0,n to its stabilization in M0,n(a1, a2, . . . , an). If ∆
is a marked curve corresponding to a point in M0,n, and Ck is an irreducible
component of ∆; then if Ck is unstable it contracts to a point in the weighted,
nodal, marked curve corresponding to c(∆).

Example 3.1. Consider c :M0,5 →M0,5

(
1, 1, 14 ,

1
4 ,

1
4

)
and X :=

1
2

3
4
5∈

M0,5. The contraction morphism contracts the irreducible component of X ,

with the points marked 4 and 5, to a point, as is shown in (10).

c

(
1

2
3

4
5

)
=

1
2

3
4,5

∈M0,5

(
1, 1,

1

4
,

1

4
,

1

4

)
(10)

Notice that

1
2

3
4
5
∼=M0,4 ×M0,3

∼=M0,4 × {a point}

∼=M0,4

∼=
1

2
3

4,5

†

For our purposes, we wish to consider the moduli space

M0,n(1, 1, εn−2) (11)

such that (n−2)ε < 1. This space parametrizes stable chains of projective lines,
with n marked, weighted points. We still consider the nodes of such a chain as
special points with weight 1, we assign the weight 1 to one of the marked points
on each of the extremal components of such a curve (which, we consider to be
the points 0 and ∞). This moduli space is known as the Losev-Manin space
([LM00]).

Remark 3.2. Our stability condition requires that there be at least one marked

point on the smooth locus of each of the extremal rays of such a nodal curve, as

the nodes only contribute a weight of 1.
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3.2.1 A geometric construction of M0,5(1, 1, ε3)

For our computations we will only consider the Losev-Manin spaceM0,5(1, 1, ε3)/S3,
where we work modulo the symmetric group in order to ignore the ordering of
our three “light” points.

Example 3.2. The marked curves in figure 4 represent points inM0,5(1, 1, ε3)/S3,

where the dots correspond to marked points of weight ε (these are only two ex-

amples and by no way an exhaustive list). The dots are not labeled in order to

indicate that we have chosen to ignore their orderings. Each irreducible com-

0 0

Figure 4: Two curves representing points in M0,5(1, 1, ε3)/S3

ponent of both of these curves has two special points of weight 1, and therefore

satisfy our stability condition. †

3.3 The space of relative stable maps to P1

Given d ∈ N and partitions, x0 := (x1, . . . , xn) and x∞ := (y1, . . . , ym), of d the
moduli space of relative stable maps

M∼0
(
P1;x0[0],x∞[∞]

)
(12)

parametrizes maps f : C → X where

(a) C is a rational nodal curve.

(b) X = X1 ∪X2 ∪ · · · ∪Xn is a chain of P1s.

(c) f is a degree d cover.

(d) 0̃ ∈ X1 and ∞̃ ∈ Xn have ramification profiles x0 and x∞, respectively.

(e) For every node n in X , f−1(n) consists of nodes in C.

(f) Consider the normalization morphism f̃ : C̃ →
∐n
i=1Xi. Fix a nodal point

n ∈ X . Then there exits Xj and Xj+1 such that n corresponds to n1 ∈ Xj

10



and n2 ∈ Xj+1. Fix p ∈ f−1(n). The point p ∈ C then corresponds to

p1, p2 ∈ C̃ such that p1 ∈ f̃−1(n1) and p2 ∈ f̃−1(n2). Then we have that
the ramification of p1 over n1 equals the ramification of p2 over n2 via the
map f̃ . (This is called the kissing condition.)

(g) For every i ∈ {1, . . . , n}, there is at least one branch point on the smooth
locus of Xi. (This is our stability condition.)

(h) The two maps (C,x0,x∞) → X and (C ′,x′0,x
′
∞) → X are equivalent if

there exists an isomorphism of nodal curves ∼ and a map φ ∈ Aut(X )
which preserves the marked points 0̃ and ∞̃, such that diagram 13 commutes
([GV03]).

(C,x0,x∞)
∼ //

��

(C ′,x′0,x
′
∞)

��
X

φ // X

(13)

Example 3.3. Consider M∼0 (P1; (10, 2), (5, 4, 3)) which parametrizes stable

maps of degree 12 to P1. Figure 5 shows a point [f : C → X ] inM∼0 (P1; (10, 2), (5, 4, 3)).

The ramification profiles over P1 and P2 are given by (2, 7, 3) and (2, 3, 4, 3),

3

4

5
2

10

p
1

p
2

Figure 5: [f : C → X ]

respectively. The ramification locus of these two points correspond to nodes in

C. †
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For our computations we will be using the space

M∼0 (P1;x) :=M∼0 (P1; (x1, x2), (x3, x4, x5)) (14)

where we treat the ramification indices as variables.

3.4 Stabilization morphism

The stabilization morphism

stab :M∼0 (P1; (x1, x2), (x3, x4, x5))→M0,5 (15)

takes the map [f : C → X ] to the stabilization of the source curve C in M0,5.
The marked points on stab ([f : C → X ]) correspond to the points with special
ramification (over 0̃ and ∞̃) in C, and are thus labeled x1, x2, x3, x4, and x5. (a
more general description of this morphism can be found in [GV03]):

Example 3.4. Figure 6 shows again the same point inM∼0 (P1; (10, 2), (5, 4, 3))

from example 12, but with the components of C which are unstable in M0,5

colored red. The stabilization morphism contracts these components, and we

get that

stab

 410

3

5
2  =

4

510

3
2

10

3
2

∈M0,5 (16)

†

410

3

5
2

Figure 6: [f : C → X ]
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3.5 Branch Morphism

The branch morphism

br :M∼0 (P1; (x1, x2), (x3, x4, x5))→M0,5(1, 1, ε3)/S3 (17)

takes the the target curve X of the map [f : C → X ] to X̄ ∈ M0,5(1, 1, ε3)/S3,
such that

(a) X̄ is a chain of projective lines isomorphic to X .

(b) The points 0̃ and ∞̃ in X , which have special ramification, are sent to 0 and
∞, respectively, on the extremal rays of X̄ .

(c) The branch points in X with simple ramification profiles are sent to the
“light” points in M0,5(1, 1, ε3)/S3.

where the points 0̃ and ∞̃ in X correspond to the marked points 0 and ∞ (re-
spectively) in M0,5(1, 1, ε3)/S3 which are given weight 1, and all other marked
points in X correspond to the 3 other “light” points.

In order to compute double Hurwitz numbers geometrically we will use the
fact that the double Hurwitz number H(x) is the degree of the branch morphism
(in the same manner as Cavalieri and Marcus in [CM13]).

3.6 Psi classes

In order to compute non-transverse intersections on our moduli spaces, we in-
troduce psi classes. We can define psi classes using euler classes in the following
way (a more comprehensive introduction to psi classes can be found in [Koc01]):

Consider the forgetful morphism

πn+1 :M0,n+1 →M0,n (18)

which forgets the marked point pn+1 and stabilizes. This gives us a universal
family overM0,n and the relative dualizing sheaf ωπ. Additionally, we have the
n canonical sections

σi :M0,n →M0,n+1 (19)

which are represented in red in figure 7 for the case where n = 5.

Each of these canonical sections comes with a corresponding cotangent line
bundle Li := σ∗i ωπ. Li is dual to the tangent line bundle Ti which is isomorphic
to the normal bundle supported on each section. This is because the tangent
space at each point in a section is determined by a normal vector (represented

13



TTTT

Figure 7: A family of 5-pointed curves over a 1-dimensional base

by the blue vectors on the “bottom” section in figure 7). We define the ith psi
class to be the Euler class of Li. That is,

ψi := e (Li) (20)

Remark 3.3. Because Li is dual to the tangent line bundle Ti,

e (Ti) = −e (Li) = −ψi

3.6.1 Computing Psi Classes and Intersections on M0,5

Let Di,n+1 be the divisor inM0,n+1 which represents a curve where the marked
points pi and pn+1 lie together on an irreducible component, and all other
marked points lie on the other irreducible component, as is shown in figure 8.

1

i

n+1

2

i-1
i+1

n

. . .

. . .

Figure 8: Di,n+1

Lemma 3.4. Consider the forgetful morphism πn+1. We have the following

14



identity

ψi = π∗n+1ψi +Di,n+1 (21)

relating psi classes in M0,n (on the right side of the equation) with psi classes

in M0,n+1 (on the left side of the equation).

Proof. Found as proof of lemma 1.3.1 in [Koc01].

Using Lemma 3.4 we can now compute psi classes in terms of boundary
divisors in M0,n. Let ∆(n,{1},{2,3}) denote the sum of all divisors in M0,n

representing curves where p1 lies on one irreducible component of the curve,
and p2, p3 lie on the other irreducible component. Our claim is that

ψ1 = ∆(n,{1},{2,3}) (22)

Proof of equation 22. First, we note that since M0,3 is just a point

∆(3,{1},{2,3}) = 0

and our claim holds trivially. Now, assume that ψ1 = ∆(n−1,{1},{2,3}) inM0,n−1.
Then, by induction and lemma 3.4, we have that

ψ1 = π∗nψ1 +D1,n

= π∗n∆(n−1,{1},{2,3}) +D1,n

= ∆(n,{1},{2,3})

as required.

Example 3.5. Consider the case where n = 5. Then we have that

∆(4,{1},{2,3}) = 1

2
3

4
(23)

and that

π∗5

(
1

2
3

4
)

=
1

2
3

4
5 + 1

2
34

5

where there are two irreducible components on which the 5th marked point could

have lied before being “forgotten”. Additionally, we note that

D1,5 = 1

2
3

4
5
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Summing, as in the proof of equation 22, gives

π∗5

(
1

2
3

4
)

+D1,5 =
1

2
3

4
5 + 1

2
34

5 + 1

2
3

4
5

= ∆(5,{1},{2,3})

as expected.

†

Using psi classes, we can now compute non-transverse intersections onM05,.
We begin by an example of a self-intersection.

Example 3.6. Consider the divisor D =
1

2
3

4
5 ∈ M0,5. We wish to

compute the intersection D ∩D. A set-theoretic self-intersection would give D,

which is of the wrong co-dimension (that is, of co-dimension 1). In order to

compute this non-transverse intersection, we must use psi classes.

First, we note that

D ∼=M0,4 ×M0,3

where we consider the marked points onM0,4 to be {1, 2, 3, •}; and the marked

points on M0,3 to be {4, 5, ?}. There are two natural projections π• and π? of

D onto its factors

D∼=

M0,4 ×M0,3

π•
~~

π?
  

M0,4 M0,3

Let N be the normal bundle of D in M0,5. That is

N := ND/M0,5|
D

By proposition 3.31 in [HM98]

N = T• ⊗ T?

16



Then we have that[
1

2
3

4
5

]
∩

[
1

2
3

4
5

]
= e (N)

= +e (π∗• (T•)) + e (π∗? (T?))

= −e (π∗• (L•))− e (π∗? (L?))

= −π∗• (ψ•)− π∗? (ψ?)

= −π∗•

(
1

2
3

)
− 0

= −

[
1

2
3

4
5

]
= −{pt.} ∈ M0,5

which is co-dimension 2 as required.

†

In general, if D is an irreducible divisor in M0,5, and δ is a boundary
stratum such that δ ⊆ D then we get the following intersection formula

δ ∩D := e
(
ND/M0,5|

δ

)
(24)

Remark 3.5. (ψi)
2

= {pt.} in M0,5.

3.6.2 Psi classes on our other spaces

We also wish to compute non-transverse intersections on the other moduli spaces
which appear in the central diagram. To this end we introduce the psi classes
ψ̂ and ψ̃.

There are cotangent line bundle classes at the fully weighted points 0 and
∞ on the Losev-Manin space M0,5(1, 1, ε3), which we denote ψ̂0 and ψ̂∞, re-
spectively. Additionally we get the following relations between psi classes:

c∗
(
ψ̂0

)
= ψ0 (25)

and
c∗
(
ψ̂∞

)
= ψ∞

17



where c∗ is the pullback via the contraction morphism from equation 9. From
this and remark 3.5 we get that

ψ̂2
0 = {pt.} ∈ M0,5(1, 1, ε3) (26)

The pre-images of 0̃ and ∞̃ on the target curve inM∼0
(
P1; (x1, x2), (x3, x4, x5)

)
,

which correspond to each of the xi’s, also have cotangent line bundle classes

which we denote ψ̃i. Fix a point corresponding to some xi in f−1
(

0̃
)

. We get

the following correspondence via the branch morphism

br∗
(
ψ̂0

)
= xiψ̃i (27)

(We get a similar correspondence between ψ̂∞ and the psi-classes of points over
∞̃.) Furthermore, via the stabilization morphism, we get that

stab∗

(
ψ̃i

)
= ψi (28)

4 The Central Diagram

Diagram 29 is a special case of the central diagram appearing as equation 12 in
[CM13]. We use it to give H(x) as an intersection number onM0,5 as equation
30.

M∼0
(
P1;x

) stab //

br

��

M0,5

M0,5(1, 1, ε3)/S3

(29)

From the degree of the branch morphism and equation 26 we get that

1

3!
H(x) = br∗

(
ψ̂2
0

)
where the factor of 1

3! comes from working with the Losev-Manin space modulo
the symmetric group. Then, using equations 27 and 25, we get the following:

H(x) = 6
(

br∗
(
ψ̂2
0

))
= 6

(
ψ̃1x1

)2
= 6 stab∗

(
ψ1x1 +

∑
Di

)2
18



where
∑
Di is the sum of divisors ofM∼0

(
P1;x

)
which parametrize maps where

the point with ramification xi is supported on a trivial component of the source
curve. Such divisors appear as corrections at walls from the pull-back of ψ1 via
the branch morphism.

Since we wish to compute H(x) as an intersection onM0,5, we push forward
via the stabilization morphism to get

H(x) = 6 stab∗

(
x21stab∗ψ2

1 + 2x1stab∗ψ1

(∑
Di

)
+
∑(

Di
2
))

(30)

5 Computations

In this section we compute the 2, 3 double Hurwitz number geometrically, using
equation 30, in each chamber. We cross the following walls in their given order:

1. W1 : x2 + x3 = 0

2. W2 : x2 + x4 = 0

3. W3 : x2 + x5 = 0

4. W4 : x2 + x3 + x4 = 0

5. W5 : x2 + x3 + x5 = 0

6. W6 : x2 + x4 + x5 = 0

We refer to the totally negative chamber where x1 > |xi| + |xj |, for every
i, j ∈ {2, 3, 4, 5}, as Cx1 ; and where x2 > |xi| + |xj | for every i, j ∈ {1, 3, 4, 5}
as Cx2

. Additionally, we refer to to the chamber reached after crossing the ith

wall as ci+1. We continue with the notation introduced in 2.1, referring to the
Hurwitz polynomial in the ith chamber as Pi(x).

5.1 Cx1

In this totally negative chamber, the size of x2 and our stability condition pre-
vent there from being any boundary strata. Therefore,

Px1
(x) = 6 stab∗

(
x21stab∗ψ2

1 + 2x1stab∗ψ1

(∑
Di

)
+
∑(

Di
2
))

= 6 stab∗
(
x21stab∗ψ2

1

)
= 6x21
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5.2 Crossing W1

In this chamber, there is one new boundary divisor D1 which is shown in figure 9.
This gives us the following formula for the Hurwitz polynomial in c1

P2(x) = 6 stab∗
(
x21stab∗ψ2

1 + 2x1stab∗ψ1 (D1) +
(
D1

2
))

(31)

In order to compute the second term of P2(x), we must first consider stab∗(D1)

x1

x2

x3

x4

x5

Figure 9: D1

which will be a multiple of a divisor inM0,5. This factor is given by automorphism-
weighted “gluing factors” on the irreducible components of D1. Consider the
following as a statements about coarse moduli spaces.

D1
∼= M0(−x3;x3)×M0(x2;−(x2 + x3), x3)

×M0(x1, (x2 + x3);x4, x5)×M0(x1;−x1)
∼= M0(x2;−(x2 + x3), x3)×M0(x1, (x2 + x3);x4, x5)

However, since we are interested in pushing forward this stratum as a fine moduli
space, we must take into consideration gluing factors and automorphisms of D1.
In this case, the only gluing factor which is not canceled by automorphisms is
x2 + x3. Using this and the intersection formula from section 3.6.1, we can
compute the second term of P2(x) as

stab∗

(
2x1

(
stab∗ψ̃1

)
D1

)
= 2x1ψ1 · (stab∗D1)

= 2x1 (x2 + x3)ψ1 ·

[
x1

x4
x5

x2
x3

]

= 2x1 (x2 + x3)

[
x1

x2
x3

x4
x5

]
= 2x1 (x2 + x3) {pt.}
= 2x1x2 + 2x1x3
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For the third term of P2(x), we must compute the non-transverse intersec-
tion D2

1. To this end, consider the map

M0(x2;−(x2 + x3), x3)×M0(x1, (x2 + x3);x4, x5)

br×br
��

M0(1, 1•, ε)×
(
M0(1, 1?, ε

2)/S2

)
(32)

which allows us to compute D2
1 in terms of the psi classes over 1• and 1?. Using

formula 24, we get

D2
1 = D1 · e

(
ND/M

)
= D1 · (e (T•) + e (T?))

= D1 ·
(
−ψ̂• − ψ̂?

)
= −D1 · ψ̂• −D1 · ψ̂?
= 0−D1 · ψ̂?

= − 1

2!
2x1

(
M0(x1, (x2 + x3);x4, x5)× {pt.}

)
which gives

stab∗
(
x1
(
M0(x1, (x2 + x3);x4, x5)× {pt.}

))
= −x1x2 − x1x3 (33)

We can now sum terms to compute the Hurwitz polynomial in the second
chamber:

P2(x) = 6 stab∗
(
x21stab∗ψ2

1 + 2x1stab∗ψ1 (D1) +
(
D1

2
))

= 6
(
x21 + (2x1x2 + 2x1x3)− (x1x2 + x1x3)

)
= 6

(
x21 + x1x2 + x1x3

)
= 6x1 (x1 + x2 + x3)

This gives us a wall crossing formula of

WC1(x) = 6x1 (x1 + x2 + x3)− 6x21

= 6x1 (x2 + x3)

5.3 Crossing W2

In order to compute P3(x) we introduce the following notation:

Dnew := the formal sum of all boundary divisors which appear in the

new chamber

Dold := the formal sum of all boundary divisors which have already

appeared in former chambers
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This notation and our wall-crossing formula allow us to rewrite equation 30 in
this chamber as

P3(x) = 6 stab∗
(
ψ1x1 +Dold +Dnew)2

)
= 6 stab∗

(
(x1stab∗ψ1 +Dold)

2
+D2

new + 2 (Dnew (x1stab∗ψ1 +Dold))
)

= P2(x) +WC2(x)

= P2(x) + 6 stab∗
(
D2

new + 2 (Dnew (x1stab∗ψ1 +Dold))
)

In c3 there is only one new divisor, which we denote D2. As a combinatorial
object it is the same as D1 (as shown in figure 9), with the points labeled x4
and x3 swapped. Thus, we can compute D2

2 by an action of (3 4) ∈ S5 on D2
1

and get that
stab∗D

2
2 = −x1x2 − x1x4 (34)

Similarly, by the same action on stab∗ (2x1 (stab∗ψ1)D1) we get that

stab∗ (2x1 (stab∗ψ1)D2) = 2x1x2 + 2x1x4 (35)

Finally, using that fact that D1 ·D2 = ∅, we sum our terms to get

P3(x) = P2(x) +WC2(x)

= P2(x) + 6 stab∗
(
D2

new + 2 (Dnew (x1stab∗ψ1 +Dold))
)

= P2(x) + 6 (−x1x2 − x1x4 + 2x1x2 + 2x1x4)

= P2(x) + 6 (x1x2 + x1x4)

= 6
(
x21 + x1x2 + x1x3 + x1x2 + x1x4

)
= 6x1 (x1 + 2x2 + x3 + x4)

5.4 Crossing W3

Again, we only have one new boundary divisor D3. D3 can be defined by the
action of (3 5) ∈ S5 on D1. Additionally, D1 ·D3 = ∅ and D2 ·D3 = ∅, allowing
us to compute the terms of P4(x) as we did the terms of P3(x), giving

P4(x) = P3(x) +WC3(x)

= P3(x) + 6 stab∗
(
D2

new + 2 (Dnew (x1stab∗ψ1 +Dold))
)

= P3(x) + 6(−x1x2 − x1x5 + 2x1x2 + 2x1x5)

= P3(x) + 6(x1x2 + x1x5)

= 6
(
x21 + 3x1x2 + x1x3 + x1x4 + x1x5

)
= 6x1(2x2)
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5.5 Crossing W4

In c5 there are two new boundary divisors D4 (shown as figure 10) and D5

(shown as figure 11), both of new combinatorial types.

x1

x2

x3

x4

x5

Figure 10: D4

x1

x2

x3

x4

x5

Figure 11: D5

Again, we use our former notation to get that

P4(x) = P3(x) +WC4(x)

= P3(x) + 6 stab∗
(
D2

new + 2 (Dnew (x1stab∗ψ1 +Dold))
)

To compute D2
new, we first consider D4 ·D5, which is given as figure 12. This

has only two non-trivial gluing factors, namely, (x1+x2+x5) and (x2+x3+x4).
This gives

stab∗(D4 ·D5) = (x1 + x2 + x5) (x2 + x3 + x4) {pt.}
= x22 + x1x2 + x2x3 + x2x4 + x2x5 + x1x3 + x3x5 + x1x4 + x4x5

Next, for D2
new we get

stab∗D
2
4 = stab∗

(
−x2

(
M0 (x2; (x2 + x3 + x4), x3, x4)

))
× {pt.}

= −x2 (x2 + x3 + x4)× {pt.}
= −x22 − x2x3 − x2x4

and

stab∗D
2
5 =stab∗

(
−
(
M0(x2; (x2 + x3 + x4), (−x3− x4))

×M0(x1, (x2 + x3 + x4);x5)

×M0((−x3 − x4);x3, x4)
))

=− (x2 + x3 + x4) (−x3 − x4) {pt.}
=x23 + x24 + x2x3 + x2x4 + 2x3x4
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x3

x4

x5
x
1

x
2

Figure 12: D4 ·D5

Next, because stab∗ (D4) ·ψ1 = ∅ and codim (stab∗ (d5)) = 2, we have that
stab∗ (2 (Dnew · x1stab∗ψ1)) = 0.

Finally, we look at stab∗ (2 (Dnew ·Dold)). While D5 does not intersect any
old divisors, D4 has two such non-trivial intersections, namely D1 ·D4 (figure 13)
and D2 ·D4. First, we compute stab∗ (D1 ·D4) by considering the only two non-

x4

x3

x5
x
1

x
2

Figure 13: D1 ·D4

trivial gluing factors on D1 ·D4, giving

stab∗ (D1 ·D4) = (x2 + x3)(x2 + x3 + x4) {pt.}
= x22 + 2x2x3 + x2x4 + x23 + x3x4

And, since D2 ·D4 is combinatorially the same as D1 ·D4 in figure 13 up to an
action of (3 4) ∈ S5, we also get that

stab∗ (D2 ·D4) = x22 + 2x2x4 + x2x3 + x24 + x3x4

Therefore,

stab∗ (2 (Dnew ·Dold)) = 4x22 + 6x2x3 + 6x2x4 + 2x23 + 4x3x4 + 2x24
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We now sum all of our terms to get

P5(x) =P4(x) +WC4(x)

=6x1(2x2)

+ 6(x22 + x1x2 + x2x3 + x2x4 + x2x5 + x1x3 + x3x5 + x1x4 + x4x5

− x22 − x2x3 − x2x4
+ x23 + x24 + x2x3 + x2x4 + 2x3x4

+ 4x22 + 6x2x3 + 6x2x4 + 2x23 + 4x3x4 + 2x24)

=6x1(2x2) + 6x2(x2 + x3 + x4)

=6x2(2x1 + x2 + x3 + x4)

5.6 Crossing W5

In the 6th chamber there are two new boundary divisors, D6 and D7. D6 is the
same as D4 (figure 10) and D7 is of the same type as D5 (figure 11), both up
to an action of (4 5) ∈ S5. Then, by our intersections on D4 and D5 as well as
this symmetry, we get the following terms for D2

new:

• stab∗ (D6 ·D7) = x1x3 + x3x4 + x1x5 + x4x5

• stab∗
(
D2

6

)
= −x22 − x2x3 − x2x5

• stab∗
(
D2

7

)
= x23 + x25 + x2x3 + x2x5 + 2x3x5

To compute Dnew ·Dold, we again use the symmetry from the last chamber.
As with D5, D7 does not intersect any old boundary divisors, while D6 inter-
sects both D1 and D3, which we can compute by an action of (4 5) ∈ S5 on
stab∗ (D1 ·D4) and stab∗ (D2 ·D4), respectively, giving the following:

• stab∗ (D1 ·D6) = x22 + 2x2x3 + x2x5 + x23 + x3x5

• stab∗ (D3 ·D6) = x22 + 2x2x5 + x2x3 + x25 + x3x5
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So we get the following in c6

P6(x) =P5(x) +WC5(x)

=6x2(2x1 + x2 + x3 + x4)

+ 6 (−x22 − x2x3 − x2x5
+ x23 + x25 + x2x3 + x2x5 + 2x3x5

+ x1x3 + x3x4 + x1x5 + x4x5

+ 4x22 + 6x2x3 + 6x2x5 + 2x23 + 4x3x5 + 2x25)

=6x2(2x1 + x2 + x3 + x4) + 6x2(x2 + x3 + x5)

=6x2(x1 + x2 + x3)

5.7 Crossing W6

Finally, in the Cx2
there are again two new boundary divisors, D8 and D9. As

before, D8 is the same as D4 (figure 10) and D9 is of the same type as D5

(figure 11), both up to an action of (3 5) ∈ S5. Again, by our intersections on
D4 and D5 as well as this symmetry, we get the following terms for D2

new:

• stab∗ (D8 ·D9) = x1x4 + x3x4 + x1x5 + x3x5

• stab∗
(
D2

8

)
= −x22 − x2x4 − x2x5

• stab∗
(
D2

9

)
= x24 + x25 + x2x4 + x2x5 + 2x4x5

We compute Dnew ·Dold as we did in the last chamber to get

• stab∗ (D2 ·D8) = x22 + 2x2x5 + x2x4 + x25 + x4x5

• stab∗ (D3 ·D8) = x22 + 2x2x4 + x2x5 + x24 + x4x5

...and we finally reach Cx2 with

Px2(x) =P6(x) +WC6(x)

=6x2(x1 + x2 + x3)

+ 6 (−x22 − x2x4 − x2x5
+ x24 + x25 + x2x4 + x2x5 + 2x4x5

+ x1x4 + x3x4 + x1x5 + x3x5

+ 4x22 + 6x2x4 + 6x2x5 + 2x24 + 4x4x5 + 2x25)

=6x2(x1 + x2 + x3) + 6x2(x2 + x4 + x5)

=6x2(x1 + 2x2 + x3 + x4 + x5)

=6x22
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as we expect from the symmetry with Cx1 .
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